วันจันทร์ที่ 3 กุมภาพันธ์ พ.ศ. 2557

3.หลักการทำงานของพาวเวอร์ซัพพลาย


3.หลักการทำงานของพาวเวอร์ซัพพลาย
1. ไฟกระแสสลับขาเข้า (AC Input) พลังงานไฟฟ้าในส่วนนี้ จะมาจากปลั๊กไฟ โดยที่รู้แล้วว่าไฟที่ใช้กันอยู่จะเป็นไฟฟ้ากระแสสลับที่มีขนาดแรงดัน 220v ความถี่ 50 Hz เมื่อเสียบปลั๊กไฟกระแสไฟฟ้าก็จะวิ่งตามตัวนำเข้ามายังเครื่องใช้ไฟฟ้า

2. ฟิวส์ (Fuse) เป็นส่วนที่ทำหน้าที่ในการป้องกันวงจรพาวเวอร์ซัพพลายทั้งหมดให้รอดพ้น อันตราย จากกระแสไฟแรงสูงที่เกิดขึ้นจากการถูกฟ้าผ่า หรือกระแสไฟฟ้าแรงสูงในรูปแบบต่างๆ โดยหากเกิดกระแสไฟฟ้าแรงสูงเกินกว่าที่ฟิวส์จะทนได้ ฟิวส์ตัวนี้ก็จะตัดในทันทีทันใด

3. วงจรกรองแรงดัน วงจรกรองแรงดันนี้จะทำหน้าที่กรองแรงดันไฟไม่ว่าจะเป็นแบบกระแสสลับ หรือกระแสตรงก็ตาม ที่เข้ามาให้มีความบริสุทธิ์จริงๆ เพื่อป้องกันแรงดันไฟที่ผิดปกติเช่นไฟกระชาก ซึ่งจะเป็นผลให้วงจรต่างๆ ในพาวเวอร์ซัพพลายเกิดความเสียหายขึ้นได้

4. ภาคเรคติไฟเออร์ (Rectifier) หลังจากที่ไฟกระแสสลับ 220v ได้วิ่งผ่านฟิวส์ และวงจรกรองแรงดันเรียบร้อยแล้วก็จะตรงมายังภาคเรคติไฟเออร์ โดยหน้าที่ของเจ้าเรคติไฟเออร์ ก็คือ การแปลงไฟกระแสสลับ ให้มาเป็นไฟกระแสตรง ซึ่งก็ประกอบไปด้วย

   • ตัวเก็บประจุ (Capacitor) จะทำหน้าที่ทำปรับให้แรงดันไฟกระแสตรงที่ออกมาจากบริดเรคติไฟเออร์ ให้เป็นไฟกระแสตรงที่เรียบจริงๆ

   • ไดโอดบริดจ์เรคติไฟเออร์ (Bridge Rectifier) ซึ่งอาจจะอยู่ในรูปของตัว IC หรือแบบที่นำไดโอด 4 ตัวมาต่อกันให้เป็นวจรบริดจ์เรคติไฟเออร์

5. วงจรสวิตชิ่ง (Switching) เป็นวงจรที่ใช้ในการทำงานร่วมกับวงจรควบคุม (Contrlo Circuit) เพื่อตรวจสอบว่าควรจะจ่ายแรงดันทั้งหมดให้กับระบบหรือไม่ โดยถ้าวงจรควบคุมส่งสัญญาณมาให้กับวงจรสวิตซิ่งว่าให้ทำงาน ก็จะเริ่มจ่ายแรงดันไฟฟ้าที่ได้จากภาคเรคติไฟเออร์ไปให้กับหม้อแปลงต่อไป

6. หม้อแปลงไฟฟ้า (Transformer) หม้อแปลงที่ใช้ในวงจรสวิตชิ่งซัพพลายจะเป็นหม้อแปลงที่มีหน้าที่ในการแปลงไฟ ที่ได้จากภาคสวิตชิ่ง ซึ่งก็รับแรงดันไฟมาจากภาคเรติไฟเออร์อีกต่อหนึ่ง โดยแรงดันไฟฟ้ากระแสงตรงที่มีค่าแรงดันสูงขนาดประมาณ 300 v ดังนั้นหม้อแปลงตัวนี้ก็จะทำหน้าที่ในการแปลงแรงดันไฟกระแสตรงสูงนี้ให้มี ระดับแรงดันที่ลดต่ำลงมา เพื่อที่จะสามารถใช้งานกับเครื่องคอมพิวเตอร์ได้ ก่อนที่จะส่งไปให้วงจรควบคุมแรงดันต่อไป

7. วงจรควบคุมแรงดัน (Voltage Control) เป็นวงจรที่จะกำหนดค่าของแรงดันไฟฟ้ากระแสตรงที่ได้รับมาจากหม้อแปลงไฟฟ้า เพื่อที่จะให้ได้ระดับแรงดันที่เหมาะสมกับอุปกรณ์ต่างๆ โดยค่าของระดับแรงดันไฟฟ้านี้ก็จะมีขนาด 5v และ 12v สำหรับพาวเวอร์ซัพพลายที่ใช้กับเมนบอร์ดแบบ AT แต่ถ้าเป็นพาวเวอร์ซัพพลายที่ใช้กับเมนบอร์ดที่เป็นแบบ ATX ก็จะต้องมีวงจรควบคุมแรงดันให้ออกมามีขนาด 3.3v เพิ่มอีกหนึ่ง (ซึ่งซีพียูรุ่นเก่าที่ใช้แรงดันไฟขนาด 3.3 v นี้ก็สามารถที่จะดึงแรงดันไฟในส่วนนี้ไปเลี้ยงซีพียูได้เลย)

8. วงจรควบคุม เป็นวงจรที่ใช้ในการควบคุมวงจรสวิตชิ่ง ว่าจะให้ทำการจ่ายแรงดันไปให้กับหม้อแปลงหรือไม่ และแน่นอนว่าในส่วนนี้จะทำงานร่วมกับวงจรลอจิกที่อยู่บนเมนบอร์ด เมื่อวงจรลอจิกส่งสัญญาณกลับมาให้แก่วงจรควบคุม วงจรควบคุมก็จะสั่งการให้วงจรสวิตชิ่งทำงาน

 

4.หลักการทำงานของแรม


4.การทำงานของแรม 

RAM ย่อมาจากคำว่า Random-Access Memory เป็นหน่วยความจำของระบบ มีหน้าที่รับข้อมูลเพื่อส่งไปให้ CPU ประมวลผลจะต้องมีไฟเข้า Module ของ RAM ตลอดเวลา ซึ่งจะเป็น chip ที่เป็น IC ตัวเล็กๆ ถูก pack อยู่บนแผงวงจร หรือ Circuit Board เป็น module
เทคโนโลยีของหน่วยความจำมีหลักการที่แตกแยกกันอย่างชัดเจน 2 เทคโนโลยี คือหน่วยความจำแบบ DDR หรือ Double Data Rate (DDR-SDRAM, DDR-SGRAM) ซึ่งเป็นเทคโนโลยีที่พัฒนาต่อเนื่องมาจากเทคโนโลยีของหน่วยความจำแบบ SDRAM และ SGRAM และอีกหนึ่งคือหน่วยความจำแบบ Rambus ซึ่งเป็นหน่วยความจำที่มีแนวคิดบางส่วนต่างออกไปจากแบบอื่น


SDRAM

รูปแสดง SDRAM
อาจจะกล่าวได้ว่า SDRAM (Synchronous Dynamic Random Access Memory) นั้นเป็น Memory ที่เป็นเทคโนโลยีเก่าไปเสียแล้วสำหรับยุคปัจจุบัน เพราะเป็นการทำงานในช่วง Clock ขาขึ้นเท่านั้น นั้นก็คือ ใน1 รอบสัญญาณนาฬิกา จะทำงาน 1 ครั้ง ใช้ Module แบบ SIMM หรือ Single In-line Memory Module โดยที่ Module ชนิดนี้ จะรองรับ datapath 32 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณเดียวกัน

DDR - RAM


รูปแสดง DDR - SDRAM

หน่วยความจำแบบ DDR-SDRAM นี้พัฒนามาจากหน่วยความจำแบบ SDRAM เอเอ็มดีได้ทำการพัฒนาชิปเซตเองและให้บริษัทผู้ผลิตชิปเซตรายใหญ่อย่าง VIA, SiS และ ALi เป็นผู้พัฒนาชิปเซตให้ ปัจจุบันซีพียูของเอเอ็มดีนั้นมีประสิทธิภาพโดยรวมสูงแต่ยังคงมีปัญหาเรื่อง ความเสถียรอยู่บ้าง แต่ต่อมาเอเอ็มดีหันมาสนใจกับชิปเซตสำหรับซีพียูมากขึ้น ขณะที่ทางเอเอ็มดีพัฒนาชิปเซตเลือกให้ชิปเซต AMD 760 สนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR เพราะหน่วยความจำแบบ DDR นี้ จัดเป็นเทคโนโลยีเปิดที่เกิดจากการร่วมมือกันพัฒนาของบริษัทยักษ์ใหญ่อย่าง เอเอ็มดี, ไมครอน, ซัมซุง, VIA, Infineon, ATi, NVIDIA รวมถึงบริษัทผู้ผลิตรายย่อยๆ อีกหลายDDR-SDRAM เป็นหน่วยความจำที่มีบทบาทสำคัญบนการ์ดแสดงผล 3 มิติ
ทางบริษัท nVidia ได้ผลิต GeForce ใช้คู่กับหน่วยความจำแบบ SDRAM แต่เกิดปัญหาคอขวดของหน่วยความจำในการส่งถ่ายข้อมูลทำให้ทาง nVidia หาเทคโนโลยีของหน่วยความจำใหม่มาทดแทนหน่วยความจำแบบ SDRAM โดยเปลี่ยนเป็นหน่วยความจำแบบ DDR-SDRAM การเปิดตัวของ GeForce ทำให้ได้พบกับ GPU ตัวแรกแล้ว และทำให้ได้รู้จักกับหน่วยความจำแบบ DDR-SDRAM เป็นครั้งแรกด้วย การที่ DDR-SDRAM สามารถเข้ามาแก้ปัญหาคอคอดของหน่วยความจำบนการ์ดแสดงผลได้ ส่งผลให้ DDR-SDRAM กลายมาเป็นมาตรฐานของหน่วยความจำที่ใช้กันบนการ์ด 3 มิติ ใช้ Module DIMM หรือ Dual In-line Memory Module โดย Module นี้เพิ่งจะกำเนิดมาไม่นานนัก มี datapath ถึง 64 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณที่ต่างกัน

Rambus

รูปแสดง Rambus

Rambus นั้นทางอินเทลเป็นผู้ที่ให้การสนับสนุนหลักมาตั้งแต่แรกแล้ว Rambus ยังมีพันธมิตรอีกเช่น คอมแพค, เอชพี, เนชันแนล เซมิคอนดักเตอร์, เอเซอร์ แลบอเรทอรีส์ ปัจจุบัน Rambus ถูกเรียกว่า RDRAM หรือ Rambus DRAM ซึ่งออกมาทั้งหมด 3 รุ่นคือ Base RDRAM, Concurrent RDRAM และ Direct RDRAM RDRAM แตกต่างไปจาก SDRAM เรื่องการออกแบบอินเทอร์-เฟซของหน่วยความจำ Rambus ใช้วิธีการจัด address การจัดเก็บและรับข้อมูลในแบบเดิม ในส่วนการปรับปรุงโอนย้ายถ่ายข้อมูล ระหว่าง RDRAM ไปยังชิปเซตให้มีประสิทธิภาพสูงขึ้น มีอัตราการส่งข้อมูลเป็น 4 เท่าของความเร็ว FSB ของตัว RAM คือ มี 4 ทิศทางในการรับส่งข้อมูล เช่น RAM มีความเร็ว BUS = 100 MHz คูณกับ 4 pipline จะเท่ากับ 400 MHz
วิธีการเพิ่มประสิทธิภาพในการขนถ่ายข้อมูลของ RDRAM นั้นก็คือ จะใช้อินเทอร์เฟซเล็ก ๆ ที่เรียกว่า Rambus Interface ซึ่งจะมีอยู่ที่ปลายทางทั้ง 2 ด้าน คือทั้งในตัวชิป RDRAM เอง และในตัวควบคุมหน่วยความจำ (Memory controller อยู่ในชิปเซต) เป็นตัวช่วยเพิ่มแบนด์วิดธ์ให้ โดย Rambus Interface นี้จะทำให้ RDRAM สามารถขนถ่ายข้อมูลได้สูงถึง 400 MHz DDR หรือ 800 เมกะเฮิรตซ์ เลยทีเดียว
แต่การที่มีความสามารถในการขนถ่ายข้อมูลสูง ก็เป็นผลร้ายเหมือนกัน เพราะทำให้มีความจำเป็นต้องมี Data path หรือทางผ่านข้อมูลมากขึ้นกว่าเดิม เพื่อรองรับปริมาณการขนถ่ายข้อมูลที่เพิ่มขึ้น ซึ่งนั่นก็ส่งผลให้ขนาดของ die บนตัวหน่วยความจำต้องกว้างขึ้น และก็ทำให้ต้นทุนของหน่วยความจำแบบ Rambus นี้ สูงขึ้นและแม้ว่า RDRAM จะมีการทำงานที่ 800 เมกะเฮิรตซ์ แต่เนื่องจากโครงสร้างของมันจะเป็นแบบ 16 บิต (2 ไบต์) ทำให้แบนด์วิดธ์ของหน่วยความจำชนิดนี้ มีค่าสูงสุดอยู่ที่ 1.6 กิกะไบต์ต่อวินาทีเท่านั้น (2 x 800 = 1600) ซึ่งก็เทียบเท่ากับ PC1600 ของหน่วยความจำแบบ DDR-SDRAM

สัญญาณนาฬิกา

DDR-SDRAM จะมีพื้นฐานเหมือนกับ SDRAM ทั่วไปมีความถี่ของสัญญาณนาฬิกาเท่าเดิม (100 และ 133 เมกะเฮิรตซ์) เพียงแต่ว่า หน่วยความจำแบบ DDR นั้น จะสามารถขนถ่ายข้อมูลได้มากกว่าเดิมเป็น 2 เท่า เนื่องจากมันสามารถขนถ่ายข้อมูลได้ทั้งในขาขึ้นและขาลงของหนึ่งรอบสัญญาณ นาฬิกา ในขณะที่หน่วยความจำแบบ SDRAM สามารถขนถ่ายข้อมูลได้เพียงขาขึ้นของรอบสัญญาณนาฬิกาเท่านั้น
ด้วยแนว คิดง่าย ๆ แต่สามารถเพิ่มแบนด์วิดธ์ได้เป็นสองเท่า และอาจจะได้พบกับหน่วยความจำแบบ DDR II ซึ่งก็จะเพิ่มแบนด์วิดธ์ขึ้นไปอีก 2 เท่า จากหน่วยความจำแบบ DDR (หรือเพิ่มแบนด์วิดธ์ไปอีก 4 เท่า เมื่อเทียบกับหน่วยความจำแบบ SDRAM) ซึ่งก็มีความเป็นไปได้สูง เพราะจะว่าไปแล้วก็คล้ายกับกรณีของ AGP ซึ่งพัฒนามาเป็น AGP 2X 4X และ AGP 8X
หน่วยความจำแบบ DDR จะใช้ไฟเพียง 2.5 โวลต์ แทนที่จะเป็น 3.3 โวลต์เหมือนกับ SDRAM ทำให้เหมาะที่จะใช้กับโน้ตบุ๊ก และด้วยการที่พัฒนามาจากพื้นฐานเดียว DDR-SDRAM จะมีความแตกต่างจาก SDRAM อย่างเห็นได้ชัดอยู่หลายจุด เริ่มตั้งแต่มีขาทั้งหมด 184 pin ในขณะที่ SDRAM จะมี 168 pin อีกทั้ง DDR-SDRAM ยังมีรูระหว่าง pin เพียงรูเดียว ในขณะที่ SDRAM จะมี 2 รู ซึ่งนั่นก็เท่ากับว่า DDR-SDRAM นั้น ไม่สามารถใส่ใน DIMM ของ SDRAM ได้ หรือต้องมี DIMM เฉพาะใช้ร่วมกันไม่ได้

 




     

5.หลักการทำงานฮาร์ดดิสก์


5.หลักการทำงานฮาร์ดดิสก์
 
            เป็น อุปกรณ์เก็บบันทึกข้อมูลที่มีโครงสร้างคล้ายกับดิสเก็ตต์ แต่จุข้อมูลมากกว่าและมีความเร็วในการเข้าถึงข้อมูลสูงกว่า ส่วนใหญ่จะถูกติดตั้งอยู่ภายในเครื่องคอมพิวเตอร์เพื่อใช้สำหรับเก็บตัว โปรแกรมระบบปฏิบัติการ ( operating system ) รวมถึงโปรแกรมประยุกต์อื่น ๆ ฮาร์ดดิสก์ ผลิตมาจากวัสดุแบบแข็งจำนวนหลายแผ่นวางเรียงต่อกันเป็นชั้น จานแม่เหล็กแต่ละจาน เรียกว่า แพลตเตอร์ ( platter ) ซึ่งอาจจะมีจำนวนต่างกันได้ในฮาร์ดดิสก์แต่ละรุ่น
โครงสร้างฮาร์ดดิสก์โดยทั่วไปมีส่วนประกอบดังนี้
             
ชื่อส่วนประกอบ
คำอธิบาย
platter
 
track
sector
cylinder
read/write head
ส่วนของจานแม่เหล็กแต่ละจานบนฮาร์ดดิสก์ซึ่งสามารถบันทึกข้อมูลได้ทั้งสองด้าน
พื้นที่ตามแนวเส้นรอบวงบนแพลตเตอร์นั้น
ส่วนของแทรคที่แบ่งย่อยออกเป็นท่อนเหมือนกับดิสเก็ตต์
แทรกที่อยู่ตรงกันของแต่ละแพลตเตอร์ (แต่ละจาน)
หัวสำหรับอ่าน/เขียนข้อมูลบนแพลตเตอร์
           

  


    
โครงสร้างของฮาร์ดดิสก์
          การทำงานของฮาร์ดดิสก์นั้น ตัวแผ่นจานจะหมุนเร็วมาก (หลายพันถึงกว่าหมื่นรอบต่อนาที) โดยที่หัวอ่าน/เขียน ซึ่งเป็นอุปกรณ์แม่เหล็กจะลอยเหนือแผ่นแพลตเตอร์ทั้งสองด้านในระยะห่างที่ เล็กกว่าขนาดของเส้นผมมนุษย์ การทำงานจะอาศัยการส่งกระแสไฟฟ้าเพื่อให้เกิดการเปลี่ยนแปลงของสนามแม่เหล็ก โดยที่หัวอ่าน/เขียน จะไม่มีโอกาสสัมผัสกับผิวของแพลตเตอร์แต่อย่างใด เพื่อป้องกันการกระทบกับผิวของแพลตเตอร์ ซึ่งจะทำให้ข้อมูลบนแผ่นเสียหายได้ปัจจุบันมีผู้ผลิตฮาร์ดดิสก์ออกมาจำหน่าย หลายยี่ห้อด้วยกัน ซึ่งแต่เดิมมีความจุไม่มากเท่าไร แต่ปัจจุบันด้วยเทคโนโลยีการผลิตที่ดีกว่าเดิม ทำให้การจัดเก็บข้อมูลของฮาร์ดดิสก์มีขนาดความจุที่มากขึ้นในระดับหลายร้อย กิกะไบต์ (ซึ่งมากกว่าฟล็อปปี้ดิสก์นับแสนเท่า) และมีแนวโน้มว่าจะเพิ่มขึ้นอีก ซึ่งสามารถรองรับการเก็บข้อมูลที่มีขนาดใหญ่หรือไฟล์ประเภทมัลติมีเดียต่าง ๆ เช่น ไฟล์ภาพยนตร์ วิดีโอ เสียงเพลง ภาพกราฟิก ได้อย่างเพียงพอการเลือกซื้อฮาร์ดดิสก์มาใช้งาน อาจไม่จำเป็นต้องคำนึงถึงความจุข้อมูลที่มากเกินความจำเป็นก็ได้ แต่ควรคำนึงถึงรูปแบบการทำงานเป็นหลักว่า มีความต้องการบันทึกข้อมูลประเภทใด และฮาร์ดดิสก์ที่ใช้อยู่นั้นเพียงพอหรือไม่ ซึ่งหากไม่พอก็สามารถหาหรือเลือกซื้อฮาร์ดดิสก์แบบถอดได้มาเพิ่มเติม           สรุปข้อแตกต่างระหว่างดิสเก็ตต์และฮาร์ดดิสก์    
   
คุณสมบัติ
ดิสเก็ตต์
ฮาร์ดดิสก์
ความจุข้อมูล
เก็บข้อมูลได้น้อย เนื่องจากกลไกอ่านเขียนก็มีความแม่นยำไม่สูงนัก ทั้งที่พื้นที่ไม่จากฮาร์ดดิสก์มากนัก ทำให้แบ่งแทรคและ
เซกเตอร์ได้ไม่ละเอียด
เก็บข้อมูลได้มาก และกลไกที่อ่านเขียนก็จะมีความแม่นยำสูงมาก และใช้การเข้ารหัสสัญญาณที่ซับซ้อน ทำให้จัดแบ่งแทรคและเซกเตอร์ที่จะใช้เก็บบันทึกข้อมูลได้มาก
ราคา
ค่อนข้างถูก เพราะผลิตจำวัสดุพลาสติกชนิดอ่อนและกลไกก็มีความเร็วต่ำ ซึ่งจะมีต้นทุนที่ต่ำกว่า อีกทั้งตัวแผ่นยังถอดเปลี่ยนได้
ค่อนข้างสูง เพราะอุปกรณ์ที่ใช้ผลิตประกอบด้วยวัสดุเหล็กชนิดแข็ง และกลไกอื่น ๆ ก็เป็นแบบความเร็วสูงตามไปด้วย
หัวอ่านข้อมูล
สัมผัสกับแผ่นจานทุกครั้งที่อ่านหรือเขียนข้อมูลลงบนแผ่น จึงมีความสึกหรอมากกว่าทั้งแผ่นและหัวอ่าน
ไม่สัมผัสกับแผ่นจาน จึงไม่สึกหรอเท่ากับดิสเก็ตต์แต่จะลอยอยู่เหนือแผ่นจาน โดยมีช่วงห่างที่เล็กมากจนแทบมองไม่เห็นด้วยตาเปล่า
การเข้าถึงข้อมูล
ทำได้ช้า
หัวอ่านทำงานเร็ว และแผ่นก็หมุนเร็วมาก ทำให้เข้าถึงข้อมูลได้เร็วกว่า